Ethics of Vaccine Trials

Holly Taylor, PhD, MPH

Department of Bioethics

NIH

Disclaimer

The views expressed in this talk are my own. They do not represent the position or policy of the NIH, DHHS, or US government.

Vaccination

- Most immediate and definitive of preventive solutions.
 - Smallpox
 - Eradicated in 1980
 - Polio
 - 80% of global population living in certified polio-free regions
 - Measles/Mumps/Rubella
 - Preliminary data indicates 300% increase in global cases in first three months of 2019, eradication status at risk in US

Source: Poland et al (2009); WHO (2017); WHO (2019)

Vaccination

- Population wide vaccination to achieve/maintain 'population immunity'
 - Herd effect 80-90% coverage
- Benefits
 - Protects individuals from infection
 - Reduces transmission in population
- Risks
 - No vaccine without risk

Source: Nuffield Council on Bioethics (2007)

Vaccine Trial

Source: CDC (2018)

1981	First cases of novel disease reported
1981	First patient admitted to NIH/Clinical Center
1982	Term Acquired Immune Deficiency Syndrome (AIDS) adopted
1984	HTLV-III identified as cause of AIDS (HIV adopted in 1986)

Source: Office of NIH History

"...we also believe that the new [diagnostic blood test] will enable us to develop a vaccine to prevent AIDS in the future. We hope to have such a vaccine ready for testing in approximately two years." **Margaret Heckler** Secretary, DHHS

Source: Office of NIH History

- Do we have a HIV Vaccine?
- Do we still need a HIV vaccine?

1985	CDC reported 10,000 cases of AIDS, 4,942 deaths
1987	First Phase 1 clinical trial of HIV vaccine at NIH/CC
1987	NIAID establishes AIDS Vaccine Evaluation Group
1992	First Phase 2 clinical trial of HIV vaccine, individuals at risk of infection enrolled

Source: Office of NIH History

1998	First Phase 3 trial, randomized placebo controlled trial of HIV vaccine
2000	NIAID establishes HIV Vaccine Trial Network
2009	First evidence of "modest" efficacy (RV144), Thailand (31%)
2016	Trial with new version of RV144 underway in South Africa

Source: NIAID (2018)

1998	First Phase 3 trial, randomized placebo controlled trial of HIV vaccine
	Controlled that of the vaccine
2000	NIAID establishes HIV Vaccine Trial Network
2009	First evidence of "modest" efficacy (RV144), Thailand (31%)
2016	Trial with new version of RV144 underway in South Africa

Source: NIAID (2018)

HIV/AIDS in 1998

AIDS deaths - total 11.7 million

Adults and children living with HIV/AIDS - total 30.6 million

Source: WHO (1998)

HIV in 1998: US

- AZT prevents transmission of HIV from mother-to-child during pregnancy (1994)
- 94% of people with HIV in the US on combination therapy

Source: WHO (1998)

HIV in 1998: US

Figure 1. Mortality and Frequency of Use of Combination
Antiretroviral Therapy Including a Protease Inhibitor among
HIV-Infected Patients with Fewer than 100 CD4+ Cells per
Cubic Millimeter, According to Calendar Quarter, from
January 1994 through June 1997.

Source: Palella et al (1998)

HIV in US: 1998

- Lack of universal health care in US
 - Those with private insurance more likely to be on a protease inhibitor, less likely to get sick and die
- Hostility and discrimination towards those perceived to be HIV infected or at risk for infection

Source: AIDS Action Foundation (1994); WHO (1998)

Ethical Principles

- Collaborative partnership
- Social value
- Scientific validity
- Fair participant selection
- Favorable risk benefit ratio
- Independent review
- Informed consent
- Respect for participants

Source: Emanuel, Grady and Wendler (2008)

Ethical Principles

- Collaborative partnership
- Social value
- Scientific validity
- Fair participant selection
- Favorable risk benefit ratio
- Independent review
- Informed consent
- Respect for participants

Source: Emanuel, Grady and Wendler (2008)

- Scientific Validity
 - Sample size
 - Standard of Prevention
- Informed Consent
 - HIV positive on conventional HIV tests
- Respect for Participants
 - Treatment for those who seroconvert while on trial
- Collaborative Partnerships
 - Meaningful community involvement

SCIENTIFIC VALIDITY

- Sample Size
 - The higher the incidence, the smaller the sample you need to determine whether vaccine effective
 - The lower the incidence, the larger sample size you need to determine whether vaccine is effective

Hypothetical 2- arm trial (vaccine v. placebo)

Length of Trial	Annual HIV incidence rate			
	1%	2%	3%	4%
2.0 years	16, 725	8,399	5,624	4,234
2.5 years	11,442	5,754	3,859	2,910
3.0 years	8,775	4,419	2,968	2,242

Assumptions:

- 90% power to detect 50% reduction in new infections
- Loss to follow-up 10% per year

Hypothetical 2- arm trial (vaccine v. placebo)

Length of Trial	Annual HIV incidence rate			
	1%	2%	3%	4%
2.0 years	16, 725	8,399	5,624	4,234
2.5 years	11,442	5,754	3,859	2,910
3.0 years	8,775	4,419	2,968	2,242

Assumptions:

- 90% power to detect 50% reduction in new infections
- Loss to follow-up 10% per year

- Standard of Prevention
 - Randomized, placebo controlled trial

- Standards of Prevention
 - What do we tell subjects about prevention of HIV?

- Standards of Prevention
 - HIV vaccine trials must incorporate the best available behavioral risk reduction interventions to encourage participants to avoid behaviors that place them at risk for infection.
 - Abstinence, counseling, condom use, use of sterile needle equipment

- Standards of Prevention
 - Known to be effective in preventing HIV transmission
 - Practically achievable as a standard in the local setting
 - Reasonably accessible by those screened or enrolled in HIV prevention.

Source: Rennie and Sugarman (2010)

- Enhanced Prevention (not locally available)
 - Potential direct benefit
 - Not biased if same methods offered to both arms
 - Possibility of greater attractiveness to potential subjects

PRO

Source: Dawson and Zwerski (2014)

- Enhanced Prevention (not locally available)
 - Increases inequities
 - Unintended adverse biological interactions
 - Increased cost/time to trial completion
 - Concerns about adherence
 - Decreased policy relevance

CON

Source: Dawson and Zwerski (2014)

- Standards of Prevention
 - Is there a reason to make sure risk reduction message is given by someone other than the investigator?

- Standards of Prevention
 - Investigators must demonstrate that the conflict of interest inherent in the provision of risk reduction interventions in the course of HIV vaccine trials is mitigated.

1998	First Phase 3 trial, randomized placebo controlled trial of HIV vaccine
2000	NIAID establishes HIV Vaccine Trial Network
2009	First evidence of "modest" efficacy (RV144), Thailand (31%)
2016	Phase 2b/3 trial with new version of RV144 underway in South Africa

Source: NIAID (2018)

- Randomized, placebo controlled trial
- Standard of prevention:
 - Condoms
 - Counseling
 - STD diagnosis and management
- Referrals:
 - Male circumcision
 - Post-exposure prophylaxis
 - Pre-exposure prophylaxis

Source: NIAID (2016)

Standard of Prevention

1998

2019

- Counseling
- Condoms
- Sterile needles

- Counseling
- Condoms
 - Male and Female
- Sterile needles
- Male circumcision
- Pre-exposure prophylaxis (PrEP)
- Post exposure prophylaxis (PEP)
- Treatment as prevention
 - Reduction of viral load in community

Source: AIDS Action Foundation (1994); Haire, Folayan and Brown (2014); Janes et al (2019)

INFORMED CONSENT

Screening

- Psychosocial counseling and referrals must be provided to those individuals determined to be ineligible for trial participation by virtue of a positive HIV test.
 - Referral to care

Informed Consent

- Certain biological and social risks inherent in HIV vaccine research are unique and deserving of special and explicit discussion.
 - Trial subjects may be rendered HIV-positive under conventional testing
 - Remote risk that vaccination could increase susceptibility
 - Participation may make them ineligible for future trials, or unresponsive to future, more effective vaccines

Informed Consent

 It is essential that no guarantees of protection against HIV infection be implied by participation HIV vaccine trials.

Source: AIDS Action Foundation (1994); Rennie and Sugarman (2010)

Informed Consent

- It is essential that no guarantees of protection against HIV infection be implied by participation HIV vaccine trials.
 - Behavioral disinhibition

Source: AIDS Action Foundation (1994); Rennie and Sugarman (2010)

Informed Consent

 Subjects must be apprised of the possibility that they may suffer discrimination as though there were infected with HIV merely because they participation in a HIV vaccine trial. To the extent known, participations should receive full information about possible sources of social discrimination and counselling on how to respond to it.

RESPECT FOR PARTICIPANTS

Respect for Participants

- Comprehensive psychosocial counseling must be available to all trial participants.
- Psychosocial counseling and referrals should be made available to partners and intimate associates of trial participants at the request of the participant.

Respect for Participants

- The provision of a range of comprehensive services (health care, legal and psychosocial) is ethically required and constitutes a necessary precursor for the enrollment of an appropriate cohort. Services must be in pace throughout the duration of the trial and must have both individual and community-wide components.
 - Referral to treatment to those who seroconvert

Respect for Participants

- Long-term follow-up is a key component of vaccine efficacy trials.
- With the consent of volunteers, all breakthrough infections must be followed extensively.

COLLABORATIVE PARTNERSHIPS

- Involvement of community in meaningful way at the earliest stages of the research.
 - Who represents community?
 - How will responsibility be shared?
 - How will fair benefits for the community be assured?

Source: Emanuel, Grady and Wendler (2008); Rennie and Sugarman (2010);

- Stakeholder Views (South Africa)
 - Current trial site staff involved in vaccine trials
 - Current members of Community Advisory Boards
 - Research ethics committee members

- Stakeholder Views (South Africa)
 - Which ethical recommendations are perceived to have more or less merit (UNAIDS, UNAIDS AVAC)?
 - Overall merit
 - Top ranked: Care related
 - Bottom ranked: Prevention related

- Stakeholder Views (South Africa)
 - Informed consent
 - Trial participants should be told what prevention services they will receive (#1)
 - Trial participants should be told what care and treatment services they will receive (#2)

- Stakeholder Views (South Africa)
 - Access to treatment
 - Who will finance, deliver and monitor care and treatment should be documented (#3)
 - Care approaches and their successes and failures should be carefully documented (#4)
 - Trial participants should get access to optimal care and treatment for HIV infection including ART (#5)

VACCINE TRIALS IN LOW AND MIDDLE INCOME COUNTRIES (LMICS)

- Limited economic development;
- Inadequate protection of human rights in general, and more superficially discrimination on the basis of HIV antibody status;
- Inadequate community/cultural experience with or understanding of, scientific research;

- Limited political awareness of the importance and process of vaccine research;
- Limited availability of health care and treatment options;
- Limited ability of individuals in the community to provide informed consent, often based on class, gender, etc;

- Insufficient formal experience with, or capability to conduct ethical or scientific review of proposed research; and
- Insufficient infrastructure and technical capacity to conduct the proposed research.

- Treatment Availability
 - Is there an ethical obligation for investigators to provide treatment?
 - Is the cost of providing treatment likely prohibitive for conducting trials in LMICs?
 - Is provision of treatment likely to constitute an unreasonable inducement when there is minimal treatment available in community?
 - Once treatment has started how long does it need to be provided?

- Treatment Availability
 - Care must be taken to not create or worsen inequities in access to treatment.
 - If, in the worst case scenario, it is highlight unlikely that the local health services will be able (or willing) to assume care and treatment...researchers may wish to consider alternative study sites.
 - But maybe this further exacerbates inequities?

Source: Rennie and Sugarman (2020)

- Obligation to provide access to vaccine once found effective.
 - How often is results on one trial adequate for determining effectiveness?
 - Who is responsible for provision?
 - For how long?

Source: Guenter, Esparza, Macklin (2000); Rennie and Sugarman (2010)

- Obligation to provide access to vaccine once found effective.
 - Researchers should develop plans for post study access as the research unfolds in close consultation with community and research participants (HTPN)

Source: Guenter, Esparza, Macklin (2000); Rennie and Sugarman (2010)

- Obligation to provide access to vaccine once found effective.
 - Ethically unacceptable to start a student without a decision about post study access of participants to beneficial interventions, communicated in consent process (Nuffield)

Source: Guenter, Esparza, Macklin (2000); Nuffield (2002); Rennie and Sugarman (2010)

CONTROLLED HUMAN INFECTION (CHI) STUDIES

CHI Studies

 Involves exposing participants to infectious agents in order to test vaccine or treatment candidates and/or study host or pathogen biology in a controlled manner.

CHI Studies: History

Inoculation
with
smallpox
practiced in
Africa,
China,
India,
Europe

Smallpox (Edward Jenner)

Yellow fever (Walter Reed)

Hepatitis (Willowbrook)

First ethics article

1796

1900

1950s

2001

CHI Studies: Recent Interest

- Highly efficient research design
 - 10-100 participants per study
 - Can address basic scientific questions and obtain preliminary safety and efficacy data on vaccine candidates in the same study
- Recent successes (e.g. cholera vaccine)
- Broader trends (e.g. threat of emerging infectious diseases)

CHI Studies: Zika

Source: Marston et al 2016

CHI Studies: Ethical Challenges

- CHI studies do not present unique ethical challenges
 - Expose participants to risks for the potential benefit of others
 - Involve healthy individuals
 - Could cause public distrust in research

— ...

CHI Studies: Ethical Issues

- CHI studies do raise several unresolved questions in research ethics more broadly
 - Social value of research
 - Risks to third parties
 - Right to withdraw
 - Default to exclude "vulnerable" populations

Ethical Principles

- Collaborative partnership
- Social value
- Scientific validity
- Fair participant selection
- Favorable risk benefit ratio
- Independent review
- Informed consent
- Respect for participants

Source: Emanuel, Grady and Wendler (2008)

CHI: Cholera Study

In a 1970s University of Maryland cholera study, this man needed 26 liters of intravenous electrolytes to replace lost fluids.

Courtesy of Myron M. Levine

Social Value Judgments

- Two components:
 - magnitude of health benefits
 - likelihood of health benefits
- Prediction of how valuable the results will be in the future
- Distribution of value matters

Source: Rid & Roestenberg (under review)

Magnitude of Health Benefits

- 1) Magnitude of health-related harm from the disease (what happens if we do nothing)
- 2) Magnitude of potential health-related benefit from the research
- 3) Number of potential beneficiaries
- 4) Priority of potential beneficiaries

Source: Rid & Roestenberg (under review)

Likelihood of Health Benefits

- 1) Innovation/quality of research questions
- 2) Rigor of research design and data analysis
- 3) Feasibility and rigor of research conduct
- 4) Quality of reporting/dissemination of results
- 5) Influence on future research with the potential to lead to health benefits
- 6) Influence on clinical or public health practice

Source: Rid & Roestenberg (under review)

Summary Points

- Ethics keeps pace with scientific advancements
 - HIV vaccine trials highlight complexity of trial design
- Using a framework can help identify key concerns
 - Challenge studies highlight role of social value